Lithium Cell Amp Hour Tester and Electric Sailing

I recently electrocuted my little sail boat. I built the battery pack using some second hand Lithium cells donated by my EV. However after 8 years of abuse from my kids and I those cells are of varying quality. So I set about developing an Amp-Hour tester to determine the capacity of the cells.

The system has a relay that switches a low value power resistor (OK some coat hanger wire) across the 3.2V cell terminals, loading it up at about 27A, roughly the cruise current for my e-boat. It’s about 0.12 ohms once it heats up. This gets too hot to touch but not red hot, it’s only 86W being dissipated along about 1m of wire. When I built my EV I used the coat hanger wire load trick to test 3kW loads, that was a bit more exciting!

The empty beer can in the background makes a useful insulated stand off. Might need to make more of those.

When I first installed Lithium cells in my EV I developed a charge controller for my EV. I borrowed a small part of that circuit; a two transistor flip flop and a Battery Management System (BMS) module:

Across the cell under test is a CM090 BMS module from EV Power. That’s the good looking red PCB in the photos, onto which I have tacked the circuit above. These modules have a switch than opens when the cell voltage drops beneath 2.5V.

Taking the base of either transistor to ground switches on the other transistor. In logic terms, it’s a “not set” and “not reset” operation. When power is applied, the BMS module switch is closed. The 10uF capacitor is discharged, so provides a momentary short to ground, turning Q1 off, and Q2 on. Current flows through the automotive relay, switching on the load to the battery.

After a few hours the cell discharges beneath 2.5V, the BMS switch opens and Q2 is switched off. The collector voltage on Q2 rises, switching on Q1. Due to the latching operation of the flip flip – it stays in this state. This is important, as when the relay opens, the cell will be unloaded and it’s voltage will rise again and the BMS module switch will close. In the initial design without a flip flop, this caused the relay to buzz as the cell voltage oscillated about 2.5V as the relay opened and closed! I need the test to stop and stay stopped – it will be operating unattended so I don’t want to damage the cell by completely discharging it.

The LED was inserted to ensure the base voltage on Q1 was low enough to switch Q1 off when Q2 was on (Vce of Q2 is not zero), and has the neat side effect of lighting the LED when the test is complete!

In operation, I point a cell phone taking time lapse video of the LED and some multi-meters, and start the test:

I wander back after 3 hours and jog-shuttle the time lapse video to determine the time when the LED came on:

The time lapse feature on this phone runs in 1/10 of real time. For example Cell #9 discharged in 12:12 on the time lapse video. So we convert that time to seconds, multiply by 10 to get “seconds of real time”, then divide by 3600 to get the run time in hours. Multiplying by the discharge current of 27(ish) Amps we get the cell capacity:

  12:12 time lapse, 27*(12*60+12)*10/3600 = 55AH

So this cells a bit low, and won’t be finding it’s way onto my boat!

Another alternative is a logging multimeter, one could even measure and integrate the discharge current over time. or I could have just bought or borrowed a proper discharge tester, but where’s the fun in that?

Results

It was fun to develop, a few Saturday afternoons of sitting in the driveway soldering, occasional burns from 86W of hot wire, and a little head scratching while I figured out how to take the design from an expensive buzzer to a working circuit. Nice to do some soldering after months of software based DSP. I’m also happy that I could develop a transistor circuit from first principles.

I’ve now tested 12 cells (I have 40 to work through), and measured capacities of 50 to 75AH (they are rated at 100AH new). Some cells have odd behavior under load; dipping beneath 3V right at the start of the test rather than holding 3.2V for a few hours – indicating high internal resistance.

My beloved sail e-boat is already doing better. Last weekend, using the best cells I had tested at that point, I e-motored all day on varying power levels.

One neat trick, explained to me by Matt, is motor-sailing. Using a little bit of outboard power, the boat overcomes hydrodynamic friction (it gets moving in the water) and the sail is moved out of stall (like an airplane wing moving to just above stall speed). This means to boat moves a lot faster than under motor or sail alone in light winds. For example the motor was registering just 80W, but we were doing 3 knots in light winds. This same trick can be done with a stink-motor and dinosaur juice, but the e-motor is completely silent, we forgot it was on for hours at a time!

Reading Further

Electric Car BMS Controller
New Lithium Battery Pack for my EV
Engage the Silent Drive
EV Bugs